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Abstract

Video Question Answering (Video-QA) is a hot topic,
which captures the present knowledge from surrounding sit-
uations and performs answer reasoning accordingly. Previ-
ous methods tackle this problem as a visual-language rep-
resentation learning task. Benefiting from large-scale pre-
training of NLP, the language stream of Video-QA makes
a breakthrough. On the contrary, 2D or 3D ConvNets
dominate the visual stream. The weak visual representa-
tion becomes the bottleneck of visual reasoning. To ad-
dress this problem, we propose sparse-BEiT, a simple yet ef-
fective video-and-language representation learning frame-
work. First, it decouples video representation learning
with a divide-and-conquer strategy. Sparse-BEiT applies
a strong pre-trained BEiT as the visual encoder to extract
accurate visual representation from each frame. Then we
adopt lightweight transformer layers to integrate temporal
information. Moreover, to avoid drowning in the redundant
information of the video, we introduce a temporal sparse
sampling strategy, which samples a few frames from the
video to encourage sparse-BEiT to guide the temporal ag-
gregation module focusing on the temporal saliency clues.
In this way, our sparse-BEiT ranks 1-st place in the pub-
lic STAR track of the first Machine Visual Common Sense:
Perception, Prediction, Planning challenge on ECCV 2022.
Our code will be released on https://github.com/
JosephChenHub/sparse-beit.git.

1. Introduction

Video-QA aims to develop an interactive AI system
to communicate with the dynamic visual world via natu-
ral language. It looks forward to reasoning out the spa-
tial, temporal, and causal relationships that are crucial for
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Figure 1. Existing visual representation methods in VideoQA. It
commonly contains three branches, a 3D ConvNet for motion rep-
resentation, a object detector for ROI and a 2D ConvNet with a
LSTM for object appearance reprsentation.

next-generation AI systems. Recently, the large-scale pre-
training technology in NLP has made Video-QA a break-
through, but the weak visual stream limits further develop-
ment.

As shown in Fig 1, existing Video-QA methods typically
utilize a multi-granularity framework [9], consisting of a 3D
ConvNet for motion representation, an object detector for
ROI and a 2D ConvNet with LSTM for object appearance.
However, in this approach, the 3D ConvNet models spatial-
temporal information jointly, causing optimization difficul-
ties. Object representation extracted by 2D ConvNets may
not match the answer. Besides, the representation learned
by different branches may not be in the same feature space,
producing difficulties with branch integration. To solve this
problem, we adopt a simple yet effective Video-QA frame-
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Figure 2. Framework of Sparse-BEiT contains a strong BEiT as
the visual encoder, a two-layer transformer block as temporal ag-
gregation module, a pre-trained BERT as the text encoder, and a
visual-language integration module.

work named Sparse-BEiT in this paper. The framework of
Sparse-BEiT is as shown in Fig. 2. First, we replace 2D
ConvNets with a pre-trained strong BEiT [1] to obtain an
accurate visual representation of objects. The BEiT is built
with transformer layers without extra pooling or other spa-
tial down-sampling operations. It preserves visual repre-
sentations of objects in video clips and provides sufficient
visual evidence for answer reasoning. Then, we introduce a
two-layer transformer block as a temporal aggregation mod-
ule, providing long-range modeling ability for the whole
video. The spatial-temporal modeling problem is decoupled
into a visual encoder (BEiT) and a temporal aggregation
module in BEiT. Thus, the optimization becomes easier.

In addition, considering the redundancy of video frames,
we introduce a sparse sampling strategy [4] that randomly
samples sparse frames from the whole video clip to ex-
tract visual representations. Specifically, during the training
stage, a few frames are randomly sampled from the video
clip and fed into a vision encoder to obtain its visual rep-
resentation, and text or question-answer pairs are fed into a
language encoder to obtain the text feature. Then, these two
multi-modal features are aggregated via a cross-attention
module to generate the representation for video-language
pairs.

2. Methodology

The overall framework is shown in Fig 2, which contains
a vision encoder, a text encoder, and a visual-language inte-
gration module.

Visual encoder. In this paper, we adopt the naive Clip-
BERT [4] as our baseline model. Although ClipBERT [4]
achieves a trade-off between the computation and perfor-
mance, the weak visual encoder and the misalignment of
different modality features limit the reasoning capability.
To solve this, we replace the ResNet-50 [3] with a strong
vision transformer, BEiT, which is pre-trained on the large-
scale ImageNet-22k dataset. The large-scale pre-training
makes BEiT have a stronger scalable ability in downstream
vision tasks than other ConvNets. The absence of down-
sampling operations in transformer layers ensures that BEiT
is able to extract finer-grained features that provide suffi-
cient visual evidence for answer reasoning.
Visual-language integration. We use BERT [2] acts as
the text encoder, and a lightweight cross-attention module
is adopted to aggregate the multi-modal information.

Formally, given a video-text pair as V (for video) and T
(for text sequence), the video V is further denoted as a list
of N clips [c1, c2, · · · , cN ]. This standard paradigm can be
formulated as:

p = F(Et([Ev(c1), Ev(c2), · · · , Ev(cN )]), El(T )) (1)

where F denotes the visual-language integration module.
El(·) and Ev(·) are text encoder and visual encoder. Et

denotes the temporal aggregation module. For STAR chal-
lenge, we formulate the question answering as a multiple
choice problem, and cross-entropy loss is adopted as fol-
lows for training:

L = − 1

|D|

|D|∑
n=1

log(pn[yn]) (2)

where |D| denotes the number of dataset, pn is the logit
after softmax, and yn is the index of ground-truth.

3. Experiments
Dataset. The STAR challenge is built on the Charades
dataset [7], which contains video clips, and the average
duration of the video is about 10 seconds. The annotation
of the STAR challenge has been split into three parts, i.e.,
45, 731 clip-question pairs for the training set, 7, 098 pairs
for the validation set, and 7, 377 pairs for the test set. Dur-
ing implementation, we use PyAv to decode the compressed
video.
Implementation details. The framework is implemented
with PyTorch, and the BEiT-base model is adopted as the
vision encoder, a two-layer transformer block is used as the
temporal aggregation module, the BERT base model is used
as the text encoder, and three attention layers are used as the
cross-attention module for multi-modal information aggre-
gation. Due to there being four choices for each question
in STAR, we formulate the video question answering as a



Method Input resolution Training Frames Test Frames Interaction Sequence Prediction Feasibility Overall Acc.
ClipBERT 224*224 8x2 16x16 43.62 48.35 41.83 45.51 45.99

Sparse-BEiT 224*224 1x1 16x1 52.87 57.92 52.56 51.22 55.28
Sparse-BEiT 224*224 1x4 8x4 55.92 61.41 53.04 53.27 58.25
Sparse-BEiT∗ 384*384 1x4 8x4 59.13 64.39 58.01 55.92 61.46

Table 1. Performance on validation set of STAR, where “M × N” refer to M clips and each clip has N frames, ClipBERT use ResNet-
50 [3] as the backbone, and Sparse-BEiT, Sparse-BEiT∗ use BEiT [1] as the backbone.
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Figure 3. #frames at inference on the validation set. (a) Training with 1× 1; (b) Training with 1× 4.

multiple-choice problem. We use AdamW [5] to optimize
the end-to-end model, with maximum learning rate 1e− 5,
β1 = 0.9, β2 = 0.999, and use a warm-up learning rate
scheduling. The model is trained for 10 epochs with mixed
precision on 4-A100 GPUs with batch size 64.

Comparison with SOTA. We report the quantitative results
on the STAR validation set in Tab. 1. By replacing the vi-
sion encoder ResNet-50 [3] with BEiT [1], we can see a sig-
nificant improvement with less training and testing frames,
which indicates that the visual features are essential for
vision-language understanding. Increasing the training
frames from 1×1 to 1×4 brings us a 3 points enhancement;
this is due to only one sampled frame is not enough to rep-
resent the whole frame state, and more frames information
is needed, especially for the action that requires long-range
dependencies. Moreover, by improving the input resolu-
tion, the overall accuracy has been improved about 3 points.
However, higher input resolution means a higher computa-
tion and memory burden, so a trade-off exists between the
accuracy and computation or memory.

We use the ensemble strategy in the inference stage as
ClipBERT [4] does. From Fig. 3, we can see that even
training with 1×1, the performance can be largely enhanced
by aggregating more frames predictions, e.g., 16 × 1 vs.
1×1. Another observation is that increasing input resolution
benefits the inference that is consistent with with Tab. 1.

4. Discussion

Dense-to-sparse. To reduce the redundancy of modeling
spatial-temporal sequences, two schemes can be consid-
ered. First, sparse sampling frames like ClipBERT [4] can
be used to train the model and the ensemble strategy is
adopted in the inference stage.

This method requires fewer modifications from image-
based vision-language understanding. However, the under-
sampling of dense frames may cause a misalignment be-
tween video clips and the text, e.g., same frames are sam-
pled for different actions. Another dense-to-sparse strategy
is proposing import tokens like [6].
Sparse-to-dense. For long-time video understanding, the
frames will increase dramatically, and thus it requires a
more efficient modeling strategy. One possible direction is
to use a few key frames to estimate the full clip informa-
tion. A similar application can be referred to accelerating
compressed video object segmentation [8], which leverages
the Codec information to propagate the segmentation mask
for accelerating inference.

5. Conclusion

In this work, we find that the weak visual stream limits
the development of current Video-QA. We enhance the vi-
sual stream by using a powerful vision transformers BEiT
[1], introducing a sparse frame sampling strategy and in-



creasing the input resolution. In this way, our model
achieves state-of-the-art performance in the public STAR
dataset and ranks 1-st place in the public STAR track of the
first Machine Visual Common Sense: Perception, Predic-
tion, Planning challenge.
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