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Abstract. Understanding dynamics from visual observations is a chal-
lenging problem that requires disentangling individual objects from the
scene and learning their interactions. While recent object-centric mod-
els can successfully decompose a scene into objects, modeling their dy-
namics effectively still remains a challenge. We address this problem
by introducing SlotFormer — a Transformer-based autoregressive model
operating on learned object-centric representations. Given a video clip,
our approach reasons over object features to model spatio-temporal re-
lationships and predicts accurate future object states. In this paper, we
show that the unsupervised SlotFormer’s dynamics model can be used
to improve the performance on supervised downstream Visual Question
Answering (VQA) tasks. It enables VQA models to reason about the
future without object-level labels, even outperforming counterparts that
use ground-truth annotations.ﬂ

1 Introduction

The ability to understand complex systems and interactions between its el-
ements is a key component of intelligent systems. Learning the dynamics of a
multi-object systems from visual observations entails capturing object instances,
their appearance, position and motion, and simulating their spatio-temporal
interactions. One approach to visual dynamics modeling is to frame it as a pre-
diction problem directly in the pixel space [I520/3]. This paradigm builds on
global frame-level representations, and uses dense feature maps of past frames
to predict future features. By design, such models are object-agnostic, treating
background and foreground modeling as equal. This frequently results in poorly
learned object dynamics, producing unrealistic future predictions over longer
horizons [12]. Another perspective to dynamics learning is through object-centric
dynamics models [SII7/9]. This class of methods first represents a scene as a set
of object-centric features (a.k.a. slots), and then learns the interactions among
the slots to model scene dynamics. It allows for more natural dynamics mod-
eling and leads to more faithful simulation [I9I23]. To achieve this goal, earlier
object-centric models bake in strong scene [5] or object [10] priors in their frame-
works, while more recent methods [723] learn object interactions purely from
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data, with the aid of Graph Neural Networks (GNNs) [I] or Transformers [I§].
Yet, these approaches independently model the per-frame object interactions and
their temporal evolution, using different networks. This suggests that a simpler
and more effective dynamics model is yet to be designed.

In this work, we argue that learning a system’s dynamics from video effec-
tively requires two key components: i) strong unsupervised object-centric repre-
sentations (to capture objects in each frame) and ii) a powerful dynamical module
(to simulate spatio-temporal interactions between the objects). To this end, we
propose SlotFormer: a simple and effective Transformer-based object-centric dy-
namics model, which builds upon object-centric features [6/16], and requires no
human supervision. We treat dynamics modeling as a sequential learning prob-
lem: given a sequence of input images, SlotFormer takes in the object-centric
representations extracted from these frames, and predicts the object features in
the future steps. By conditioning on multiple frames, our method is capable of
capturing the spatio-temporal object relationships simultaneously, thus ensur-
ing consistency of object properties and motion in the synthesized frames. In
summary, this work makes the following contributions:

1. SlotFormer: a Transformer-based model for object-centric visual simulation;

2. Our method achieves state-of-the-art results on CLEVRER VQA task, with-
out leveraging any object-level annotations. This proves that SlotFormer’s
unsupervised dynamics knowledge can be successfully transferred to down-
stream supervised tasks to improve their performance “for free”.

2 SlotFormer: Object-Oriented Dynamics Learning

In this section, we describe our Transformer-based autoregressive model for
dynamics learning. Taking 7" video frames as inputs, SlotFormer first leverages
a pre-trained object-centric model to extract object features (a.k.a. slots) from
each frame (Section [2.1). These slots are then forwarded to the Transformer
module for joint spatio-temporal reasoning, and used to predict future slots (Sec-
tion. The whole pipeline is trained by minimizing reconstruction loss in both
feature and image space (Section . We show the overall model architecture
in Figure
2.1 Slot-based Object-Centric Representation

We build on the Slot Attention architecture to extract slots from videos due
to their strong performance in unsupervised object discovery. Given T input
frames {x;}1 ;, our object-centric model first extracts image features using a
Convolutional Neural Network (CNN) encoder, then adds positional encodings,
and flattens them into a set of vectors hy € RM*Penc where M is the size of
the flattened feature grid and D, is the feature dimension. Then, the model
initializes N slots S € RV *Pstet from a set of learnable vectors (t = 1), and per-
forms Slot Attention [I1] to update the slot representations as S; = fsa(S;, hy).
Here, fsa binds slots to objects via iterative Scaled Dot-Product Attention [I§],
encouraging scene decomposition. To achieve temporal alignment of slots, S, for
t > 2 is initialized as S; = ftrans(St—1), where firqns is the transition function
implemented as a Transformer encoder.
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Fig. 1: SlotFormer architecture overview. Taking multiple video frames {a:t}?zl as
input, we first extract object slots {S;}i—; using the pretrained object-centric model.
Then, slots are linearly projected and added with temporal positional encoding. The
resulting tokens are fed to the Transformer module to generate future slots {$T+k}kK:1
in an autoregressive manner.

Before training the Transformer-based dynamics model, we first pre-train the
object-centric model using reconstruction loss on videos from the target dataset.
This ensures the learned slots can accurately capture both foreground objects
and background environment of the scene.

2.2 Dynamics Prediction with Autoregressive Transformer

Overview. Given slots {S;}7_; extracted from T video frames, SlotFormer is
able to synthesize a sequence of future slots {STJrk}f:l for any given horizon
K. Our model operates by alternating between two steps: i) feed the slots into a
Transformer that performs joint spatio-temporal reasoning and predicts slots at
the next timestep, St+1, ii) feed the predicted slots back into the Transformer
to keep generating future rollout autoregressively. See Figure [1] for the pipeline
overview of our method.

Architecture. To build the SlotFormer’s dynamics module, 7, we adopt the
standard Transformer encoder module with Ny layers. To match the inner di-
mensionality D of T, we linearly project the input sequence of slots to a latent
space Gy = Linear(S;) € RV*Pe. To indicate the order of input slots, we add
positional encoding (P.E.) to the latent embeddings. A naive solution would be
to add a sinusoidal positional encoding to every slot regardless of its timestep,
as done in [4]. However, this would break the permutation equivariance among
slots, which is a useful property of our model. Therefore, we only apply posi-
tional encoding at the temporal level, such that the slots at the same timestep
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receives the same positional encoding:
V= [Gl,GQ,...,GT]—l—[Pl,Pg,...,PT], (1)

where V' € R(TN)*De ig the resulting input to the transformer 7 and P, €
RN*Pe denotes the sinusoidal positional encoding duplicated N times. As we
will show in the ablation study, the temporal positional encoding enables better
prediction results despite having fewer parameters.

Now, we can utilize the Transformer 7 to reason about the dynamics of
the scene. Denote the Transformer output features as U = [Uy,Us,...,Ur] €
R(TN)xDe e take the last N features Up € RVN*Pe and feed them to a linear
layer to obtain the predicted slots at timestep T + 1:

U=T(V), &ry1 = Linear(Ur). (2)

For consequent future predictions, ST—H will be treated as the ground-truth slots
along with {S;}7_, to predict $T+2. In this way, the Transformer can be applied
autoregressively to generate any given number, K, of future frames, as illustrated
in Figure

Remark. The SlotFormer’s architecture allows to preserve temporal consis-
tency among slots at different timesteps. To realize such consistency, we employ
residual connections from S; to St+1, which forces the Transformer 7 to apply
refinement to the slots while preserving their absolute order. Owing to this order
invariance, SlotFormer can be used to reason about individual object’s dynamics
for long-term rollout, and can be seamlessly integrated with downstream task
models.
2.3 Model Training

In contrast to prior research that predicts image tokens one by one with
a causal attention mask in GPT-style, we generate all the slots at the next
timestep in parallel. Therefore, we do not need the teacher forcing strategy [14]
for training. Instead, we train the model using the predicted slots as inputs. This
simulates the error accumulation process in long-term sequence generation, and
improves the quality of the generated videos, as we will show in our experiments.

For training, we use a slot reconstruction loss (in L) denoted as:

1 KX
4 2
LS:ﬂZZ||s’TL+k—s%+k|| : (3)
k=1n=1
When using SAVi as the object-centric model, we also employ an image re-
construction loss to promote prediction of consistent object attributes such as
colors and shapes. The predicted slots are decoded to images by the frozen SAVi
decoder f4e., and then matched to the original frames as:

K
1 .
Lr= Ve E | faee(ST4r) — Trps|[*. (4)
k=1

The final objective function is a weighted combination of the two losses with a

hyper-parameter A:
L=Ls+ MN;. (5)
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Explanatory Predictive Counterfactual

Method Descriptive Average
per opt. per ques. per opt. per ques. per opt. per ques.

Aloe 95.04 98.08 94.88 93.11 87.28 90.82 74.09 87.82

Aloe + Ours 95.17 98.04 94.79 96.50 93.29 90.63 73.78 89.26

Table 1: Accuracy of different questions on CLEVRER. All numbers are in %.
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Fig. 2: Qualitative results on CLEVRER VQA task. To answer the question “Will the
green object collide with the purple cylinder?”, SlotFormer successfully simulates the
first collision between the green and the brown cylinder (t = 13), which leads to the
second collision between the target objects (t = 29).

3 Experiments

Dataset. We demonstrate SlotFormer’s ability for downstream reasoning task
on the CLEVRER [22] VQA dataset. CLEVRER provides four types of ques-
tions: descriptive, explanatory, predictive and counterfactual. The predictive
questions require the model to simulate future interactions of objects such as
collisions. Therefore, we focus on the accuracy improvement on predictive ques-
tions by using SlotFormer’s future rollout.

Implementation details. We first pre-train SAVi [6] on the videos to perform
unsupervised segmentation, and then extract slots for training SlotFormer. We
use N = 7 slots and slot size Dy, = 128, and train SAVi on video clips of
6 consecutive frames. Other training settings follow the original paper. We use
T = 6 burn-in steps and K = 10 rollout steps to train SlotFormer. Following
previous work [23], we subsample the video by a factor of 2. For the Transformer,
we set the latent size D, = 256, and stack Ny = 4 layers. We train SlotFormer
with a batch size of 128 using the Adam optimizer for 500k steps. The learning
rate first linearly warms up to 2e —4, and then decays to zero in a cosine manner.
Task model. Since SlotFormer is a generic dynamics model, we can combine it
with any reasoning module to enhance its performance. We choose Aloe [4] as it
can jointly process slots and texts. To answer the predictive questions, we explic-
itly unroll SlotFormer for 32 steps, and run Aloe on the predicted future slots.
For other questions, we simply apply Aloe on slots from the observed frames. We
re-implement Aloe in PyTorch [I3] with the same hyper-parameters and training
settings to get a similar performance. Since our SAVi slot representations are
more powerful than their MO-Net [2] slots, we only need 12 layers of Transformer
encoder, while they use 28 layers.

Results. Table[T]presents the results for the Aloe baseline and Aloe incorporated
with SlotFormer. We focus our comparison on the predictive question accuracy.
The dynamics predicted by SlotFormer improves the accuracy of Aloe by 3.4%
and 6.0% in the per option (per opt.) and per question (per ques.) setting, re-
spectively. On the CLEVRER public leaderboard predictive question subset, we
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rank first in the per option setting, and second in the per question setting. As
a fully unsupervised dynamics model, our method even outperforms previous
state-of-the-art DCL and VRDP which use supervisedly trained object detec-
tors. Figure [2| shows an example of our predicted dynamics, where SlotFormer
accurately simulates two consecutive collision events.

4 Conclusion

In this paper, we propose SlotFormer, a Transformer-based autoregressive
model that enables consistent long-term dynamics modeling with object-centric
representations. SlotFormer learns complex spatio-temporal interactions between
the objects and generates accurate future states. Moreover, SlotFormer can
transfer unsupervised dynamics knowledge to downstream (supervised) reason-
ing tasks which leads to state-of-the-art results on CLEVRER VQA task. Finally,
we believe that unsupervised object-centric dynamics models hold great poten-
tial for simulating complex datasets, advancing world models, and reasoning
about the future with minimal supervision; and that SlotFormer is a new step
towards this goal.
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